Pre-train embedding in LightFM recommender system framework
When you install LightFM package, you will replace the lightfm.py
with the original one. Here, we just implement the Item Embedding
but you can follow the structure and implement the User Embedding
. You can use a .txt
file that each row shows the item embedding.
def __init__(self, no_components=10, k=5, n=10,
learning_schedule='adagrad',
loss='logistic',
learning_rate=0.05, rho=0.95, epsilon=1e-6,
item_alpha=0.0, user_alpha=0.0, max_sampled=10,
random_state=None, user_pretrain= False, user_pretrain_file=None,
item_pretrain=False, item_pretrain_file=None)
If you set the item_pretrain = True
then the pre-train item embedding will be considered as follows:
# Pre-train item embedding
if self.item_pretrain:
print("Pre-Train Item Embedding Lunch.")
Item_Embeddings_File = self.item_pretrain_file
Item_Embeddings = open(Item_Embeddings_File, 'r').readlines()
item_embeddings = np.ndarray((no_item_features, no_components)).astype(np.float32)
Item = 0
for eachline in Item_Embeddings:
ItemVectorElements = eachline.split()
for element in range(0, no_components):
item_embeddings[Item][element] = ItemVectorElements[element]
Item = Item + 1
self.item_embeddings = item_embeddings
print("Pre-Train Item Embedding Finished.")
else:
self.item_embeddings = ((self.random_state.rand(no_item_features, no_components) - 0.5) / no_components).astype(np.float32)
Computer vision and Deep learning
DadmaTools is a Persian NLP tools developed by Dadmatech Co.
Curated List of Persian Natural Language Processing and Information Retrieval Tools and Resources
[Official Codes] Experiments on Generalizability of User-Oriented Fairness in Recommender Systems (SIGIR 2022)
News Recommender System based on an Online Reinforcement Learning Model
Persian sentiment analysis ( آناکاوی سهش های فارسی | تحلیل احساسات فارسی )
A Systematic Analysis on the Impact of Contextual Information on Point-of-Interest Recommendation (TOIS 2022)
LGLMF: Local Geographical based Logistic Matrix Factorization Model for POI Recommendation