pip install tensorflow
from blocks import __conv_block, __dense_block, __classification_block, __parallel_block
from blocks import __depthwise_block, __indentity_block, __residual_block
import tensorflow as tf
from blocks import __identity_block, __residual_block, __dense_block, __classification_block
inputs = tf.keras.layers.Input(shape=(32, 32, 3))
x = __residual_block(inputs, filter_start=16, kernel_size=(3, 3),
use_bn=True, use_constraint=True,
use_dropout=True, constraint_rate=1,
dropout_rate=0.25, activation='relu')
x = __identity_block(x, filter_start=16, kernel_size=(3, 3),
use_bn=True, activation='relu')
x = __identity_block(x, filter_start=16, kernel_size=(3, 3),
use_bn=True, activation='relu')
x = __residual_block(x, filter_start=32, kernel_size=(3, 3),
use_bn=True, use_constraint=True,
use_dropout=True, constraint_rate=1,
dropout_rate=0.25, activation='relu')
x = __identity_block(x, filter_start=32, kernel_size=(3, 3),
use_bn=True, activation='relu')
x = __identity_block(x, filter_start=32, kernel_size=(3, 3),
use_bn=True, activation='relu')
x = __residual_block(x, filter_start=64, kernel_size=(3, 3),
use_bn=True, use_constraint=True,
use_dropout=True, constraint_rate=1,
dropout_rate=0.25, activation='relu')
x = __identity_block(x, filter_start=64, kernel_size=(3, 3),
use_bn=True, activation='relu')
x = __identity_block(x, filter_start=64, kernel_size=(3, 3),
use_bn=True, activation='relu')
x = __residual_block(x, filter_start=128, kernel_size=(3, 3),
use_bn=True, use_constraint=True,
use_dropout=True, constraint_rate=1,
dropout_rate=0.25, activation='relu')
x = __identity_block(x, filter_start=128, kernel_size=(3, 3),
use_bn=True, activation='relu')
x = __identity_block(x, filter_start=128, kernel_size=(3, 3),
use_bn=True, activation='relu')
x = __dense_block(x, unit_start=512, num_blocks=2,
flatten=True, use_constraint=True,
use_dropout=True, constraint_rate=1,
dropout_rate=0.25, activation='relu')
x = __classification_block(x, num_classes=100)
model = tf.keras.models.Model(inputs=inputs, outputs=x)
print(model.summary())
import tensorflow as tf
from blocks import __depthwise_block, __dense_block, __classification_block
inputs = tf.keras.layers.Input(shape=(32, 32, 3))
x = __depthwise_block(inputs, filters=8, strides=(1, 1), alpha=1.0,
use_bn=True, use_dropout=True,
dropout_rate=0.25, activation='relu')
x = __depthwise_block(x, filters=16, strides=(2, 2), alpha=1.0,
use_bn=True, use_dropout=True,
dropout_rate=0.25, activation='relu')
x = __depthwise_block(x, filters=32, strides=(1, 1), alpha=1.0,
use_bn=True, use_dropout=True,
dropout_rate=0.25, activation='relu')
x = __depthwise_block(x, filters=64, strides=(2, 2), alpha=1.0,
use_bn=True, use_dropout=True,
dropout_rate=0.25, activation='relu')
x = __depthwise_block(x, filters=128, strides=(1, 1), alpha=1.0,
use_bn=True, use_dropout=True,
dropout_rate=0.25, activation='relu')
x = __depthwise_block(x, filters=256, strides=(2, 2), alpha=1.0,
use_bn=True, use_dropout=True,
dropout_rate=0.25, activation='relu')
x = __depthwise_block(x, filters=512, strides=(1, 1), alpha=1.0,
use_bn=True, use_dropout=True,
dropout_rate=0.25, activation='relu')
x = __depthwise_block(x, filters=1024, strides=(2, 2), alpha=1.0,
use_bn=True, use_dropout=True,
dropout_rate=0.25, activation='relu')
x = __dense_block(x, unit_start=512, num_blocks=1,
flatten=True, use_constraint=True,
use_dropout=True, constraint_rate=1,
dropout_rate=0.5, activation='relu')
x = __classification_block(x, num_classes=100)
model = tf.keras.models.Model(inputs=inputs, outputs=x)
print(model.summary())
import tensorflow as tf
from blocks import __parallel_block, __dense_block, __classification_block
inputs = tf.keras.layers.Input(shape=(32, 32, 3))
x = __parallel_block(inputs, width=3, filter_start=64,
num_blocks=2,
use_bn=True, use_constraint=True,
use_dropout=True, constraint_rate=2,
dropout_rate=0.2, activation='relu')
x = __dense_block(x, unit_start=64, num_blocks=1,
flatten=False, use_constraint=True,
use_dropout=True, constraint_rate=2,
dropout_rate=0.2, activation='relu')
x = __classification_block(x, num_classes=100)
model = tf.keras.models.Model(inputs=inputs, outputs=x)
print(model.summary())
import tensorflow as tf
from blocks import __conv_block, __dense_block, __classification_block
# basic net.
inputs = tf.keras.layers.Input(shape=(32, 32, 3))
x = __conv_block(inputs, filter_start=64, kernel_size=(2, 2),
num_blocks=2,
use_bn=True, use_constraint=True,
use_dropout=True, constraint_rate=1,
dropout_rate=0.3, activation='relu')
x = __dense_block(x, unit_start=128, num_blocks=2,
flatten=True, use_constraint=True,
use_dropout=True, constraint_rate=1,
dropout_rate=0.5, activation='relu')
x = __classification_block(x, num_classes=100)
model = tf.keras.models.Model(inputs=inputs, outputs=x)
print(model.summary())
from transfer import Transfer_Learn
# note that selecting included_layers as -1 sets all layers of model for training.
model = Transfer_Learn(input_shape=(224, 224, 3), classes=1, included_layers=1, model='MobileNet')
print(model.summary())
SQLAlchemy Admin for Starlette/FastAPI
Easy-to-use cryptocurrency trading strategy simulator and backtester
Easy-to-use multi-strategic automatic trading for Binance Futures with Telegram integration
PyBotNet framework, high level remote control
Computer vision and Deep learning
Build REST APIs with Neo4j and Flask, as quickly as possible!
a package for type checking the urls and associated views for django
A collection of ML related stuff including notebooks, codes and a curated list of various useful resources such as books and softwares. Almost everything mentioned here is free (as speech not free food) or open-source.